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Shock waves in a dusty gas 

By G. F .  CARRIER 
Pierce Hall, Hamard University 

(Rereired 31 March 1958) 

SUMMARY 
The  plane steady decelerated flow of a dust-gas mixture is 

analysed in an approximate manner. The  problem, which has a 
five-parameter family of solutions, is reduced to a form such that 
the analysis can be completed by the integration of a first-order 
non-linear differential equation and a quadrature. A few integral 
curves are given and the characterizing features of the flow field 
are discussed. 

1. INTRODUCTION 
When a shock wave is propagated through a gas which contains an 

appreciable amount of dust, the thickness of the wave, the pressure change 
across the shock, and the other features of the flow differ greatly from 
those which arise when the shock passes through a dust-free gas. We 
consider here the stationary plane shock configuration which arises in a 
dusty gas and determine the dependence of the flow field on the parameters 
of interest. Since the solutions of the problems of interest are described 
by a many-parameter family of functions, no attempt is made to compile 
comprehensively the appropriate numbers. Instead, a few examples are 
worked out and the integrations which lead to detailed results are specified. 

2. THE SHOCK PROBLEM 

Consider a homogeneous mixture of a gas and small solid particles 
which is moving with the uniform velocity u, as in figure 1. Let the flow 
configuration be one-dimensional and let the sound speed a, of the gas 
be less than u,. It can be anticipated that a compressive change of state 
can occur without spoiling the one-dimensionality of the flow ; in particular, 
when such a compressive change occurs, the first event will be a compression 
and velocity decrease in the gas consistent with the usual shock relations 
for the gas ; this compression occurs in a very few mean free paths and the 
solid particles cannot be so quickly decelerated that they could modify 
these relations. Behind this conventional shock (we shall refer to it as the 
gas shock) the velocity of the gas is smaller than that of the dust and the dust 
will then be decelerated. The  dust will also accept heat from the gas since 
the gas temperature has been increased above that of the ambient mixture 
by the gas shock. Typical distributions of the gas velocity u ( x )  and the. 
dust velocity u(x) are shown qualitatively in figure 1. 
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The flow configuration far downstream of the gas shock will be a steady 
one in which the gas and dust will achieve the same velocities and 
temperatures. This final state can be computed very simply in the same 
way that the state following a gas shock is computed. We first write the 
equations implying the conservation of momentum and energy in the steady 
one-dimensional flow of this composite ' fluid '. I n  the statements of these 
laws we ignore the partial pressure of the dust and we restrict our analysis 
to shocks which are not so intense that any evaporation of the dust takes 
place. We also require the shock intensity to be one for which the state 

lav; p = pRT 
is a satisfactory approximation. With the notation, p(x )  = gas density, 
m = pu = const., ~(x) = dust mass per unit of volume, n = qv = const.,. 

uo =vo 

I I 
10 

* 
X 

Figure 1 .  Qualitative gas and dust velocity distributions for the steady plane flow- 
of a dust-gas mixture. 

T ( x )  = gas temperature, T(X) = dust temperature (we ignore temperature 
variations within the particle), and p ( x )  = gas pressure, these conservation 
laws are : mu+nv+p = const., (1) 

(2) ;muz + invz + mc, T+  ncr = const. 
The quantities c,, and c are, respectively, the specific heat at constant 
pressure of the gas and the specific heat of the solid material. Since pu 
is constant, the equation of state can be written 

pu = mRT. (3 
In  the initial state which we characterize by the subscript zero and in 

the final state (subscript 2), u = 21 and T = T. Equations (l), (2) and (3) 
then imply that 

and 
( m  + n)uz + mRT,/u, = (m  + n)uo + rnRT,/u, 

+ ( m  + n)u," + (mc, + nc)T, = $(m + n)u% + (mc, + nc)T,,. 

(411 

(52; 
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Thus 

where 

2muR 
uzuo = TO + 

( T =  Y + nc/(mc,) 
1 +nc/(mc,) 

(m + n)(u  + 1) 
U- 1 u3 

o+l ‘j’ 

and y = c,/c,. 
given by 

However, u l ,  the gas speed just after the gas shock, is 

Y-1 UlUO = (@)Z = - 2yR T o +  - 
y + l  y + l U : -  (7) 

A comparison of (6) and (7) shows that the final state and the state 
just after the gas shock will differ increasingly with increasing values of 
nc/(mc,), the ratio of the heat capacity per unit volume of the dust to that 
of the gas. 

The  manner in which the state variables vary with x is governed by 
equations (l), (2) and (3) ,  and by the specification of the mechanism whereby 
momentum and energy are transferred from one medium to the other. 
In  view of the variety of particle shapes and sizes to be anticipated in 
problems of interest, it would be optimistic indeed to  attempt a description 
of these transfer processes with the size and shape dependence accounted 
for in detail. It is more profitable to write down the macroscopic rules: 

xvv,, = +CD P p ( u  - v)2, 

xcVTx  = Nuk( T -  -7)l. (9 1 
These state that the knowledge of the force on a particle of mass h and 

‘ radius ’ 1 requires only the specification of a drag coefficient C, and that 
the corresponding knowledge of the heat transfer to such a particle requires 
the specification of a Nusselt number Nu. I n  general, C, and Nu depend 
on the geometry of the particles, the Reynolds number associated with the 
motion of the dust relative to that of the gas (i.e. p(u-v)Z/p, where p is 
the gas viscosity), and the Mach number M of that relative flow 
( M  = ( u - a ) / a ,  where a is the gas sound speed). However, the Mach 
number dependence is important only when M is greater than unity over 
an important portion of the flow field. I n  view of the restrictions on the flow 
speed specified above and the increase in sound speed across the gas shock*, 
the neglect of a Mach number dependence of C, and Nu does not imply 
any significant further restriction. Furthermore, the ratio of equations (8) 
and (9), namely 

involves only the ratio Nu/C,. It is an empirical fact that, for Reynolds 
numbers Re up  to several thousand, Nu N KC, Re, where K is a constant 
of order unity. When this fact is used, (10) becomes 

r . = p - ,  T--7 
vz u-v 

* Note that, with y = 1.4, this Mach number is only of order 2 for very strong shocks. 
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where /3 = 2Kk/(cp) .  In particular, if the solid material is silica, the gas 
is air and we use the values of K which are appropriate for spherical or 
short cylindrical particles, /3 = 1 is an excellent estimate. 

It is now convenient to regard v as the independent variable of our 
problem, to note that equations ( l ) ,  (2) and (3)  define T and T as given 
functions of u and v,  and to regard x ( v )  as a function to be determined. 
When this is done, equation (11) can be written as 

Since T and T are known functions of their arguments, equation (12) 
is an ordinary differential equation from which we may determine u ( v )  
once a suitable boundary condition is prescribed. The  initial condition 
which must be used requires that u(vo) = ul, the quantity defined in 
equation (7). This merely states that just behind the gas shock u = u1 
and ZI = uo. Equation (12) has a singularity (a focus) at the point (u2, u2).  

u2 “0 V 

Figure 2. The  integral curves of equation (12). 

I n  figure 2 some of the integral curves are sketched qualitatively. That  
curve which extends from the point (ul,uo) to the point (u2,u,) is the 
desired solution of equation (12). That  this curve can be obtained accurately 
by any sensible numerical procedure is readily seen. The  nature of the 
singularity and the fact that T and T are quadratic in u and v assure a smooth 
solution curve. Once ~ ( v )  has been determined, equation (8) may be 
integrated directly to give x(v). 

It would require an elaborate table of numbers to specify in detail the 
results of these integrations (e.g. u(x)) with regard to their detailed 
dependence on the independent parameters mln, c/c,, po vo alpo, uo/c, To, 
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y ,  and 8. Instead we shall display a few integral curves, u(a) ,  and record 
the dimensionless forms of the equations which would be convenient in 
computing further results. 

3. THE DIMENSIONLESS EQUATIONS AND RESULTS 

Since no exhaustive details have been recorded, we compile in this 
section a dimensionless formulation of the problem which it is convenient 
to use for computational purposes. 

w = u/a,, x = via,, 8 = TIT,, 4 = r/To,  S = c/c3, 

Quantities with subscript zero characterize the initial state, those with 
subscript unity the state immediately behind the gas shock, and subscript 2 
the final state. p, as defined in 9 2, depends on 8, the geometric constant K ,  
and the Prandtl number c p p / k .  

With the substitution of these dimensionless quantities, equations (1)) (2) I 
and (3)  become: 

Let 

E = n/m, A = (1 + e)wo + (yw,,-l, B = (1 + 6)w; + ( y  - 1)-l. 

u defined as in $ 2  becomes 
u = ( y + € S ) / ( l +  ES). 

1.0 
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E = l , y - 1 . 4 ,  s=l.o,p=l.o . 

W,=1.3,1.6,2.0,3.0 
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I 

Figure 3. Integral curves of equation (16) with E = 1. 
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Equation (12) becomes 
* = p 3  
dX w - x '  

381 

(15) 

and, using equations (13) and (14), this reduces to 

( w - z ) [ y A  - ( y +  l)w-y€x]w'(x) = E ( w - z ) [ y w -  ( y -  1 ) - X I  - 

- P.s[e(w,z>-+(W,x) l .  (16) 
With the initial condition, 

2w,l+ ( y -  l ) w ,  
y + l  ' 

w(wo)  = w1 = 

equation (16) can be integrated to give W ( X )  in the interval wo > x > w2. 
Note that W ( Z )  depends on the independently chosen parameters y, E ,  6, 6, 
and wo. 

c 
t W, =1.3, 1.6,2.0,3.0 

/ 1 
\ 1 

I I I I I I I I I  

Figure 4. Integral curves of equation (16) with E = 5.  
Z 

Equation (8) can now be written as 

X(Z)  = - 
po i 1 wo (w - x ) R e  C,(Re) ' 

Here, h must be interpreted as the average mass per particle and, because - - -  
of the temperature-dependent gas properties and the variable (w -z) ,  
Re is a function of z. For a given dust substance, X is proportional to 13 
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and for moderate Reynolds numbers C, is proportional to (Re)-l’z. Thus 
a measure of the thickness of the transition region is given by 

where Re is evaluated at the initial state just behind the gas shock. Since X 
is just u: times the mass per particle divided by the drag per particle at the 
initial state (i.e. uo times the time required to decelarate an amount uo 
under the initial drag) the result is not surprising. If the dust were composed 
of l-micron particles of silica, for example, and the initial air flow had 
Mach number 2 and a sea-level stagnation state, X would be about 1 cm. 
For 10-micron silica, the estimate becomes 30 cm. 

A few of the integral curves of equation (16) are drawn in figures 3 and 4 
for the values of the parameters specified in the diagrams. 

X = X(uZ,/po Z)(uo - u1)Re1’2, (18) 


